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Climate change impacts on planned  
supply–demand match in global wind and 
solar energy systems

Laibao Liu    1,2,3  , Gang He    4,5, Mengxi Wu    6,7  , Gang Liu1, Haoran Zhang    8, 
Ying Chen    9, Jiashu Shen1,2 & Shuangcheng Li1,2

Climate change modulates both energy demand and wind and solar energy 
supply but a globally synthetic analysis of supply–demand match (SDM) is 
lacking. Here, we use 12 state-of-the-art climate models to assess climate 
change impacts on SDM, quantified by the fraction of demand met by local 
wind or solar supply. For energy systems with varying dependence on wind 
or solar supply, up to 32% or 44% of non-Antarctic land areas, respectively, 
are projected to experience robust SDM reductions by the end of this 
century under an intermediate emission scenario. Smaller and more variable 
supply reduces SDM at northern middle-to-high latitudes, whereas reduced 
heating demand alleviates or reverses SDM reductions remarkably. By 
contrast, despite supply increases at low latitudes, raised cooling demand 
reduces SDM substantially. Changes in climate extremes and climate mean 
make size-comparable contributions. Our results provide early warnings for 
energy sectors in climate change adaptation.

With growing numbers of countries committed to achieving net-zero 
emissions energy system transitions, low-carbon and renewable wind 
and solar energy are undergoing unprecedented growth1,2. Continuing 
fast-falling costs of wind and solar power generations further accelerate 
this green energy revolution3. The International Energy Agency (IEA) 
projects that wind and solar energy might contribute to ~62% of the 
world’s electricity generation and ~26% of its total energy supply by 
2050 in the Sustainable Development Scenario1.

Growing evidence shows that the vital role of wind and solar in the 
transition pathways is complicated by climate change4–7. Both supply 
and demand sides of wind and solar energy systems are vulnerable to 
climate change, raising concerns about their anticipated efficacy under 
climate change8. On the supply side, weather-dependent wind and solar 

power generation is directly controlled by changes in meteorological 
inputs, mainly temperature, wind speed and solar irradiance9–12. For 
instance, climate change is likely to shift the geophysical pattern and 
size of wind; more frequent extreme wind events can shut down the 
wind turbine and thus block power outputs more often. On the demand 
side, a warming climate generally requires less demand for heating 
but more demand for cooling5,13. More temperature-related weather 
extremes, such as heatwaves and cold extremes, can also provoke 
sudden demand surges14.

However, compared to investigating supply and demand separately, 
combining climate change impacts on supply and demand together is 
more critical for the safe and steady operation of energy systems because 
they need supply to match demand instantly. Furthermore, climate 
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where t is time step (day) spanning from first to nth (GCMs provide 
daily simulations of variables for wind and solar energy assessments); D  
is demand; S is wind or solar supply; Dmet is demand met by supply; S of 
0 indicates no supply available to meet demand; SDM of 100% means a 
full match; and SDM of 0% means a least match. To be specific, for each 
grid cell, we assume that there is a planned local energy system with 
dependence on wind or solar supply. The local energy system may be 
a few households, a county or a city. The planned level of dependence 
can be achieved under present climate, denoted by SDMpresent, and is 
assumed to be 25%, 50% and 75% for low, medium and high levels of 
dependence scenarios, respectively. SDMpresent indicates the fraction 
of total demand met by the local wind or solar supply over a period 
representing the present climate (1985–2014). Each energy planner or 
stakeholder within a given grid cell can make general estimates of the 
unmet demand by combining their demand and SDM. Daily variations of 
heating and cooling demand are computed according to temperature: 
hot days lead to higher demand for cooling and cold days lead to higher 
demand for heating. To achieve each planned SDMpresent, the required 
installation area (IA) can be derived according to the demand and wind/
solar power density. Daily variations of supply are then computed on 
the basis of the wind/solar power density and the IA (Methods).

To isolate climate change impacts, only climate impact-drivers 
(wind speed, temperature and radiation) are allowed to modulate SDM; 
non-climatic conditions (for example, IA) are kept constant. Therefore, 
relative changes of supply, demand and SDM are only caused by climate 
change. Long-term climate change impacts on SDM are quantified 
by the differences between estimated SDM based on future climate 
(2071–2100) and present climate (1985–2014): ΔSDM = (SDM2071–2100  
− SDM1985–2014)/SDM1985–2014 × 100%, in which t in equation (1) spans from 
the first day of the first year to the final day of the 30th year. Mid-
term (2041–2070) climate change impacts on SDM are also assessed: 
ΔSDM = (SDM2041–2070 − SDM1985–2014)/SDM1985–2014 × 100%. Future climate 
projections are from two shared socioeconomic pathway scenarios 
(SSP 245 and SSP 585). SSP 245 is an intermediate emission scenario 
while SSP 585 is a very high-emission scenario. First, we assess climate 
change impacts on the supply and demand separately and disentan-
gle their respective consequences on SDM. In addition, we perform 

change impact investigations tend to look at changes of climate mean 
(long-term mean of climate state) while the impacts of climate variabil-
ity (for example, extreme weather events) remain largely unknown. In 
addition, there are still knowledge gaps in some regions that are vital 
for global wind and solar energy developments, such as Central Asia 
and China8. Quantifying these impacts is imperative because if the sup-
ply–demand match (SDM) gets deteriorated by climate change, it might 
cause more power outages, leaving severe cascading consequences 
on society and the economy15. However, a systematic and consistent 
multimodel assessment of climate change impacts on SDM for wind 
and solar systems is still lacking at the global scale.

Here, we systematically assess the impact of climate change on 
SDM of energy systems planning low-to-high dependence levels on 
local wind or solar energy supply under various climate change scenar-
ios based on 12 state-of-the-art global climate models (GCMs) partici-
pating in the Coupled Model Intercomparison Project Phase 6 (CMIP6). 
Our results show that climate change is likely to undermine the planned 
SDM in a relative sense in many regions of the world. Changes in sup-
ply and demand caused by climate change could be in opposite signs 
at a specific location, offsetting the negative synthetic effects of SDM 
to some extent. The importance of changes in climate variability is 
comparable to climate mean changes. We suggest that energy planners 
in regions where climate change undermines SDM need to adapt to 
climate change impacts on wind and solar energy systems.

Approach
Figure1 provides the conceptual illustration of climate change impacts 
on supply, demand and their consequences on the SDM. We first create 
the SDM index as the fraction of total demand met by local wind or solar 
supply over a temporal period:

Dmet,t = {
Dt, St ≥ Dt
St, St < Dt

, t ∈ [1,n]

SDM =

n
∑
1
Dmet,t
n
∑
1
Dt

× 100%

(1)
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Fig. 1 | Conceptual illustrations of climate change impacts on supply,  
demand and SDM of wind and solar energy systems. In the supply graph, the 
error bars show the mean (dots) and 1 s.d. (vertical lines) of daily supply during 
a specific period. In the demand graph, the histograms show the distribution of 
daily energy demand during a specific period. In the supply and demand graph, 
the red slashing areas show the supply–demand mismatch (SDMM).  

With climate change, changes in climate impact-drivers (wind speed, 
temperature and radiation) could force wind or solar supply to increase or be 
more variable at some time; fewer cold weather conditions induce less heating 
demand while more hot weather conditions cause more cooling demands. 
Consequently, the SDMM would require additional power sources for generating 
supply to meet demand; otherwise the SDMM would cause power outages.
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control experiments to disentangle relative contributions of climate 
mean-induced supply/demand mean and climate variability-induced 
supply/demand variability to SDM changes. Then, we combine changes 
of supply and demand together and explore whether combining them 
would ‘counterbalance’ or ‘enlarge’ SDM changes driven by supply/
demand alone (Methods).

Supply-driven SDM changes with controlled 
demand
Controlling demand is invariant to temperature changes, supply alone 
is projected to force about 25% and 37% of land areas (excluding Ant-
arctica) to experience robust reductions of SDM for energy systems 
with a high dependence on wind and solar energy supply (referred to 
as wind and solar energy system hereafter) under SSP 245, respectively 
(Fig. 2a,b). For wind systems, SDM reductions are widespread across 
northern middle-to-high latitudes (NMH) (>30° N), pronounced in west-
ern North America (−4%), eastern North America (−6%), western and 
central Europe (−2%) and Eastern Siberia (−4%). Intensified variability 
and smaller mean of supply can explain 40% and 60% of SDM reduc-
tions, respectively (Fig. 2c,e and Supplementary Fig. 1). SDM increases 
are projected in many regions at low latitudes on average (30° S–30° N) 
but with larger uncertainty, such as northern South America (+2%), 
western Africa (+3%) and Sahara (+1%). These SDM increases are caused 
by larger mean and less variability of wind energy supply, consistent 
with a recent global assessment on wind power resources based on ten 
previous versions of climate models16.

Like wind energy systems, SDM reductions of solar energy systems 
are also widespread across NMH. Compared to wind, solar systems are 
projected to experience smaller SDM reductions in magnitude glob-
ally and might also slightly gain SDM at some low-latitude regions, 

such as eastern Asia (+3%), northern South America (+1%) and the 
Mediterranean (+1%). At NMH, intensified variability and smaller mean 
explain 51% and 49% of SDM reductions, respectively (Fig. 2d,f). At low 
latitudes, benefits from weakened supply variability on SDM are coun-
terbalanced by smaller supply mean across many regions, and supply 
variability and mean explain 18% and 82% of SDM changes, respectively. 
Additionally, projected relative changes of SDM in energy systems with 
lower dependence levels on wind and solar energy show similar spatial 
patterns but are greater in magnitude (for example, 2 and 1.3 times on 
average in the middle-dependence scenario, respectively); compared 
to SSP 245, projected relative SDM changes under SSP 585 show similar 
spatial patterns but are about 1.4 and 2.7 times in magnitude on average 
for wind and solar energy systems, respectively (Supplementary Fig. 2).

Demand-driven SDM changes with controlled 
supply
The actual sensitivity of heating and cooling demands to warming per 
degree is highly variable, depending on the local energy infrastructure, 
social-economic level, user behaviour and so on8,17. Therefore, accord-
ing to previous efforts5,18–23, we design two scenarios to include the 
likely range of demand responses to warming for each location: (1) a 
high-sensitivity one: the sensitivity of demand changes to heating and 
cooling (βheat and βcool) is 5% per °C and 8% per °C, respectively; and  
(2) a low-sensitivity one: βheat and βcool are 2% per °C and 3% per °C, respec-
tively. To disentangle the effects of demand on SDM changes alone, 
present and future supply–demand profiles only differ in the demand 
(Methods). In the high-sensitive scenario and SSP 245, demand-induced 
SDM changes are more spatially uniform than that caused by supply 
alone and show apparently opposite signs on two sides of around 30° N 
(Fig. 3a,b). This apparent spatial pattern is consistent with the recent 
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Fig. 2 | Climate change impacts on SDM arising from supply alone for wind 
and solar systems globally. a,b, Changes in SDM from 1985–2015 to 2071–2100 
based on multimodel-mean estimates for energy systems with high dependence 
on wind (a) and solar (b) supply under SSP 245. The right panels show the profile 
of zonally integrated SDM changes (%). c–f, Corresponding contributions of 

climate variability (c,d) and climate mean (e,f) to SDM changes for wind (c,e) 
and solar energy (d,f) systems. Stippling indicates regions where the detected 
changes are considered to be robust; that is, 9 out of 12 models in the cluster 
agree on the sign of the changes. Latitude is shown on y axes; longitude is on  
x axes. Solid black lines show the profile of zonally integrated SDM changes.
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assessment of climate change impacts on global electricity consump-
tion5,21. Specifically, SDM increases about 1% and 2% at NMH but decreases 
−2% and −8% at south of 30° N for wind and solar systems, respectively. 
This underlines the dependence of the degree of trade-offs between 
rising cooling demands and declining heating demands on background 
climate, mainly determined by the latitude. At NMH, less required heat-
ing demands with a warming climate counterbalance raised cooling 
demands, contributing 60% and 55% to SDM increases for wind and solar 
systems, respectively (Fig. 3e,f and Supplementary Fig. 3) and weak-
ened demand variability also contributes 45% to SDM increases for solar 
systems (Fig. 3d). By contrast, at low latitudes, more required cooling 
demands largely increase total demands in mean, explaining 84% and 95% 
of SDM reductions for wind and solar systems, respectively. Additionally, 
compared to the high-dependence scenario, relative changes of SDM in 
energy systems with lower dependence levels on wind and solar energy 
are amplified in magnitude (for example, 2.2 and 1.7 times on average 
in middle-dependence scenario, respectively); compared to SSP 245, 
SDM changes under SSP 585 are about 1.8 and 2.2 times in magnitude on 
average for wind and solar systems, respectively (Supplementary Fig. 4).

SDM changes driven by both supply and demand
Taking climate change impacts on both supply and demand into 
account, the resulting SDM changes show different patterns com-
pared to that driven by supply or demand alone. At NMH, unlike 
supply-induced universal SDM reductions, it is apparent that smaller 
mean and less variability of demand can alleviate negative impacts 
from supply remarkably (Fig. 4a,b): this is most pronounced for solar 
systems, with SDM shifting from losses to gains there (−0.4% to +4%); 
wind systems experience less SDM losses (−3% to −2%) but would still 

suffer from large SDM reductions in eastern North America (−10%), 
western and central Europe (−2%) and so on. By contrast, at low lati-
tudes, large rises in cooling demands would still cause widespread 
SDM reductions for wind and solar systems, despite the benefits in 
supply from climate change for some regions here. The land area frac-
tion of low latitudes with robust SDM reductions (27% and 73%) is 5.4 
and 2.2 times larger than that caused by the supply side alone for wind 
and solar energy systems, respectively. In total, 27% and 40% of land 
areas are projected to experience robust SDM reductions for wind and 
solar energy systems, respectively. Climate variability can also make 
size-comparable contributions to future SDM changes compared to 
climate mean (Supplementary Fig. 5). Additionally, for energy systems 
with lower dependence levels on local wind and solar energy supply, 
land areas projected to experience robust SDM reductions are a bit 
larger (for example, 32% and 44% of land areas for wind and solar sys-
tems in the low-dependence scenario, respectively); there are larger 
changes of SDM under SSP 585 than that under SSP 245 (higher by 10% 
and 16% for wind and solar systems on average) (Supplementary Fig. 6).

Daily frequency and intensity of supply–demand 
mismatch
Different from the previously assessed SDM at a 30-year timescale 
(t in equation (1) spans from first day of first year to final day of 30th 
year), we further investigate SDM at a daily scale (n in equation (1) is 
1). By adopting the framework of investigating climate and weather 
extremes (for example, droughts and heatwaves) from climate sci-
ence, we also define supply–demand mismatch (SDMM: 100% − SDM) 
and two metrics for easy understanding: (1) SDMM frequency—the 
proportion of days with daily SDM <100% and (2) SDMM intensity—the 
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Fig. 3 | Climate change impacts on SDM arising from demand alone for wind 
and solar systems globally. a,b, Changes in SDM from 1985–2015 to 2071–2100 
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on wind (a) and solar supply (b) under SSP 245. The right panels show the profile 
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average fraction of unmet demand to total demand during days with 
daily SDM <100%. The frequency and intensity of SDMM for wind and 
solar systems are projected to increase considerably globally under 
SSP 245 (Fig. 4c–f). As expected, increasing frequency and intensity of 
SDMM always co-occur with decreasing SDM. In regions with robust 
SDM reductions, the frequency of SDMM is projected to increase 9% and 
7% for wind and solar systems, respectively; solar systems show a much 
larger increase of SDMM intensity (+19%) than do wind systems (+2%).

Additionally, to provide the available base of assessments for 
interested parties worldwide, we give regional sheets to elaborate 
regional average impacts of climate change on supply, demand and 
the resulting SDM for wind and solar energy systems (Fig. 5).

Climate change adaptation
More greenhouse gas emissions raise levels of climate change and 
consequent negative impacts on SDM, as shown in the high-emission 
scenario (Supplementary Figs. 7 and 8). Additionally, we propose two 
climate change adaptation strategies. In the first one, we add energy 
storage spanning from 1 to 20 days (in units of equivalent daily mean 
energy demand under present climate) to future energy systems. To 
prevent negative impacts of climate change on present SDM, energy 
systems with high dependence on wind energy supply require about 
2 days of energy storage on average (Supplementary Fig. 9a), while 
adding energy storage up to 20 days is still insufficient for solar sys-
tems across most regions (stipples in Supplementary Fig. 9b). Also, 
adding energy storage cannot mitigate the increasing frequency and 
intensity of SDMM of solar systems but work well for the increasing 
SDMM frequency of wind systems (Supplementary Fig. 10a–d). In the 
second strategy, we increase the power generation IA in the future by 

the factor of 0.1 to 1. On average, 26% and 25% of increment are suf-
ficient to prevent SDM reductions from climate change for wind and 
solar energy systems, respectively, except for parts of wind systems in 
eastern North America and Central Africa (Supplementary Fig. 9c,d). 
A larger IA to generate more energy supply can reduce the increases in 
SDMM frequency and intensity of wind and solar systems across most 
regions (Supplementary Fig. 10e–h).

Discussion and conclusions
Here, we provide a systematic and consistent multimodel assessment of 
climate change impacts on both supply and demand for wind and solar 
energy systems ranging from the grid-cell scale to global scales with 12 
state-of-the-art GCMs. SDM index is created to capture the synthetic 
effects of supply and demand on energy systems from climate change.

Energy systems must match demand with supply simultaneously. 
We emphasize that investigating either supply or demand alone can-
not offer an holistic understanding of the vulnerability of energy sys-
tems to climate change and could cause inevitable overestimations 
or underestimations. For instance, the increased energy supply at low 
latitudes under climate change16 can be counterbalanced by raised cool-
ing demands with a warming climate; projected decreased supply at 
northern middle-to-high latitudes10,24 can be alleviated a lot by declined 
heating demands. Furthermore, it is critical to take future changes 
of climate variability into account, in addition to changes of climate 
mean. Climate and weather extremes are well investigated in the cli-
mate science community25; we integrate them into energy systems and 
demonstrate that they can make size-comparable contributions to SDM 
reductions compared with commonly assessed impacts of the climate 
mean changes4. Despite growing studies of climate change impacts on 
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wind and solar energy systems in the past decade, there are still many 
regional gaps. For example, data and analysis of climate impacts on 
wind or/and solar energy in the Middle East, North Africa and South 
Asia, China and so on, are still missing8. Our global grid-cell assessment 
fills critical gaps about supply/demand and SDM in these understudied 
regions that are essential for global wind and solar developments.

Wind and solar energy system infrastructures are always fixed 
assets that last decades. Our results underline the necessity to prepare 
for climate change adaptations when planning. Global hotspot regions 
of negative climate change impact and corresponding adaptation 
needs of energy storage and IA are provided from the technical per-
spective. In reality, adding storage might not be economic for cases 
with great demand. Increasing IA is an effective strategy but is pos-
sibly limited by the realistic energy system infrastructure and policy 
constraints. For instance, for each household that plans photovoltaics 
(PV) on the roof, if all roof areas for PV panels are planned to be used 
under present climate, adding extra IA might be less practicable under 
climate change. Demand-side adaptation strategies, such as better 

home insulation26, heating/cooling system efficiency improvement27 
and ventilation system implementation28, can reduce the sensitivity of 
demand response to climate change and then alleviate climate-driven 
demand increase. If these strategies are well implemented, SDM reduc-
tions arising from the demand side are anticipated to be lowered to 
some extent. We state that the estimated climate change impacts on 
supply, demand and SDM in this study also precede any adaptation 
strategies5. Integrated Assessment models or Computable General 
Equilibrium models can take both our estimates and socioeconomic 
factors into account to derive ex post actual energy supply, demand 
and SDM. In addition, since climate change impacts on wind and solar 
energy systems can diverge at the same location (for example, wind 
SDM increase but solar SDM decrease in South America), the mix of 
wind and solar energy systems, if allowed, could be very useful. Besides, 
it is well documented that aggregating wind and solar power generation 
at a larger spatial scale can reduce the intermittency of power genera-
tion29,30; strengthening grid connections might be another option for 
climate change adaptation.
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Fig. 5 | Regional climate change impacts on supply, demand and SDM for wind 
and solar systems globally. a,b, Changes in the mean and variability (coefficient 
of variation) of supply (a) and demand (b) from 1985–2015 to 2071–2100 based 
on multimodel-mean estimates under SSP 245. For demand, H and L indicate 
the high-sensitive and low-sensitive scenario, respectively. c, Changes in SDM 
from 1985–2015 to 2071–2100 for energy systems with high dependence on wind 
and solar supply under SSP 245. Stippling indicates regions where the detected 
changes are considered to be robust; that is, 9 out of 12 models in the cluster 
agree on the sign of the changes. The regional classification is adopted from the 
sixth IPCC Working Group I reference43. NWN, north western North America; 
NEN, north eastern North America; WNA, west North America; CNA, central 
North America; ENA, east North America; NCA, north Central America;  

SCA, south Central America; CAR, Caribbean; NWS, north western South 
America; NSA, north South America; NES, north eastern South America;  
SAM, South American monsoon; SWS, south western South America; SES, south 
eastern South America; SSA, south South America; NEU, north eastern Europe; 
WCE, west and central Europe; EEU, east Europe; MED, Mediterranean;  
SAH, Sahara; WAF, west Africa; CAF, central Africa; NEAF, north eastern Africa; 
SEAF, south eastern Africa; WSAF, west southern Africa; ESAF, east southern 
Africa; MDG, Madagascar; RAR, Russian Arctic; WSB, west Siberia; ESB, east 
Siberia; RFE, Russian Far East; WCA, west central Asia; ECA, east central Asia; 
TIB, Tibetan Plateau; EAS, east Asia; ARP, Arabian Peninsula; SAS, south Asia; 
SEA, south eastern Asia; NAU, north Australia; CAU, central Australia; EAU, east 
Australia; SAU, south Australia; NZ, New Zealand; Var, variability.
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We acknowledge that energy system operation is more compli-
cated than our analysis. For example, power transmissions are also 
vulnerable to climate change31,32 and might change the spatial and 
temporal balance of supply and demand; the power system might 
also run at a spatial scale which does not overlap exactly with our grid 
cell33; technology improvements probably overcome some climate 
change impacts34. In addition, although we already used the latest 
CMIP6 GCMs, the accuracy of regional or local wind energy assessment 
can be further improved using climate simulations with finer spatial 
resolution, especially in regions with complex terrain35. Bias correction 
of wind speed with local wind mast observations is useful to reduce 
model uncertainties; for instance, more realistic parameters in power 
law extrapolation36. Therefore, careful integration of climate models 
with energy system models is highly recommended to inform compre-
hensive and accurate climate change impacts in specific regions37–39. 
Nevertheless, our study reveals how climate change could impact the 
supply-and-demand match globally. Such global assessments at a 
finer scale provide the foundation for future analyses integrating with 
realistic power systems.

Given the pivotal and rising role of wind and solar energy systems 
in mitigating climate change and achieving sustainable development, 
we demonstrate that climate change is likely to undermine the planned 
match between energy demand and wind and solar energy supply in 
a relative sense across many regions globally. The planned supply–
demand match refers to the fraction of demand met by local wind or 
solar supply. We suggest that energy system plans prepare for possible 
negative impacts from changes in both climate mean and climate 
variability. This study provides early warnings for energy sectors in 
adapting to climate change impacts on wind and solar energy systems.

Methods
Global climate models
This study uses the daily outputs of climate simulations from 
12 state-of-the-art GCMs participating in the CMIP6, including: 
ACCESS-ESM1-5, BCC-CSM2-MR, CanESM5, CESM2, CMCC-ESM2, 
GFDL-ESM4, IPSL-CM6A-LR, MPI-ESM1-2-HR, NorESM2-MM, UKESM1-
0-LL, MRI-ESM2-0 and EC-Earth3 (Supplementary Table 1). The GCMs 
are selected from different providers/institutes to ensure a relatively 
fair distribution and representativeness. We use the output of down-
welling shortwave irradiance (rsds), surface wind speed (sfcWind) and 
near-surface air temperature (tas) from GCMs as the input to compute 
global wind power and solar power density.

For the present climate, we use 30-yr simulations from the ‘histori-
cal’ scenario spanning from 1985 to 2014, which is driven by all historical 
forcings. For the future climate, we used 30-yr simulations from the 
SSP 245 scenario and SSP 585 scenario spanning from 2041 to 2100. 
SSP 245 is an intermediate emission scenario where the CO2 emission 
remains close to the present level in the first half of the century and then 
starts to decrease due to strong mitigation. In this scenario, the atmos-
pheric CO2 concentration continues to increase but the increasing 
speed slows down approaching the end of the century. The projected 
global surface temperature increase by 2100 is probably between 
2.1 °C and 3.5 °C, relative to 1850–1900. SSP 585 is a very high-emission 
scenario where human society is assumed to continue to rely on fos-
sil fuels. This scenario may be less plausible with the transformation 
of the energy section. In this scenario, the CO2 emission at the end of 
the century is about three to four times higher than the present and  
the atmospheric CO2 concentration also grows above 1,000 ppm. The 
projected global surface temperature increase by 2100 is probably 
between 3.3 °C and 5.7 °C, relative to 1850–1900 (ref. 40).

Wind power density
Wind power production is mostly a function of the instantane-
ous wind speed (U). When the wind speed is higher than the cut-in  
speed, Umin, and lower than the speed required for the nameplate 

capacity (Uc), instantaneous wind power production (Ewind) is the prod-
uct of air density (ρ), swept area of the blades (A) and the wind speed 
cubed (U3):

Ewind = 1/2ρAU
3 (2)

Wind power production remains constant after reaching the  
nameplate capacity until the wind turbine is shut down when the 
wind speed is too strong (Umax). Following a recent review9, the con-
stants 4 m s−1, 13.5 m s−1 and 25 m s−1 are assumed for Umin, Uc and Umax, 
respectively. Air density (ρ) at the surface is considered constant at 
1.225 kg m−3. Therefore, the full relationship between the instantane-
ous wind speed and the instantaneous wind power (Ewind) is given by 
the following equation:

Ewind =
⎧⎪
⎨⎪
⎩

0, U < Umin orU > Umax
1/2ρAU3 Umin ≤ U ≤ Uc
1/2ρAU3c Uc < U ≤ Umax

(3)

To convert the instantaneous wind speed (U) to daily mean wind 
speed (U) which is available in CMIP6 model outputs, the wind speed 
is assumed to conform to a two-parameter Weibull distribution9,41:

p (U ) = k
λ
(U
λ
)
k−1
exp [−(U

λ
)
k
] (4)

where p(U) represents the probability density function of instantane-
ous wind speed. The shape parameter k is chosen as 2, which falls  
within the recommended range given by ref. 41. The scale parameter λ 
in this equation is then derived from the known daily mean wind  
speed, U :

λ =
U

Γ ( 3
2
)

(5)

where Γ ( ) is the gamma function. Assuming the air density and the 
swept area of wind blades are both constants, we get the following out 
of equations (2) and (3):

∫ Ewind (U )p (U )dU ∝ λ3∫
( 13.5

λ
)
2

( 4
λ
)
2 u

3
2 e−udu + 13.53 [e−(

13.5
λ
)
2

− e−(
25
λ
)
2

] (6)

where the left-hand side is the daily mean wind power production, 
suggesting that the daily wind power production is proportional to a 
function of λ. Combining it with equation (5), we can conclude that the 
daily wind power production is proportional to a function of daily mean 
wind speed (U ). Therefore, we will use the right-hand side of equation 
(6) substituting equation (5) for λ to estimate the relative size of daily 
wind power production afterwards.

We used the wind speed at 150 m height above the surface to rep-
resent the wind speed across the rotor plane. Wind speed at this height 
is approximated using the power law9,42:

U = U10(
150
10 )

α
(7)

Here, U10 is the daily mean wind speed at 10 m extracted from 
CMIP6 model outputs. The α is a coefficient often approximated as 1/7. 
Equation (7) will be substituted in equation (5) to compute.

Since we focus on relative changes of Ewind from the present climate 
to the future climate, other factors affecting the realistic Ewind, like the 
rotor diameter and swept area, are considered as constant and would 
not affect our results.
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Solar power density
Solar power production mostly depends on solar irradiance but is also 
influenced by ambient temperature, wind speed and so on, on power 
output efficiency. Following previous efforts4,10, we take solar radiance, 
ambient temperature and wind speed as input and simulate PV power 
generation per 1 m2 of PV panel (EPV):

EPV = I × ηPV (8)

where I is the solar radiance on the PV module per m2 (W m−2) and  
ηPV is the efficiency of the PV module, which is influenced by weather 
conditions. Parameter ηPV can be computed as:

ηPV = ηpanel × (1 + γ × (Tpanel − TSTC)) (9)

where ηpanel is the assumed panel efficiency under standard conditions 
(17%); γ is the typical efficacy response of monocrystalline silicon solar 
panels (−0.005 °C−1); TSTC is the panel temperature under standard 
conditions (25 °C); and Tpanel is the panel temperature corrected with 
temperature, irradiation and wind:

Tpanel = c1 + c2 × T + c3 × I + c4 × V (10)

where c1 is 4.3 °C; c2 is 0.943; T is ambient temperature (°C); I is the 
solar radiance on the PV module (W m−2); and c4 is −1.528 °C s m−1 and 
V is the surface wind speed (m s−1). Therefore, when Tpanel surpass TSTC, 
the declined panel efficiency would further reduce EPV.

Like wind power simulations, since we focus on climate impacts  
on EPV, other factors affecting the realistic EPV, such as the  
packing factor, are considered as constant and would not affect  
our results.

Climate change impact analysis procedures
The analysis procedures of climate change impact on energy supply, 
demand and SDM are listed step by step as follows:

Step 1: Choose a local energy planner or stakeholder at one grid 
cell.

Step 2: Assume the energy planner aims for a local energy system 
with dependence on wind or solar energy supply and the planned depend-
ence can be achieved under present climate, denoted by SDMpresent.  
SDMpresent is assumed to be 25%, 50% and 75% for low, medium and high 
levels of dependence scenarios, respectively.

Step 3: The energy planner determines the absolute number of 
baseline demand (Dbase), which largely depends on the interested scale 
and stakeholder’s socioeconomic factors and does not respond to 
temperature. Daily demand and total demand (Dtotal) can be derived 
according to the following equation (11). Dtotal refers to the sum of Dbase, 
heating demand (Dheat) and cooling demand (Dcool). Please refer to the 
following section on Climate change impacts on supply and demand 
for details.

Step 4: Calculate the daily wind or solar power density (Ewind/PV) 
under present climate.

•	 For wind, refer to equations (2)–(7).
•	 For solar, refer to equations (8)–(10).

Step 5: Calculate the required IA of wind or solar plants to achieve 
the SDMpresent by solving the following equation (12). Note that, if 
required IC is not allowed due to realistic constraints, for example, 
policy or limited deployable areas, the planned SDMpresent is not suit-
able in this case.

Step 6: Calculate the supply and demand under future climate. 
To isolate climate change impacts, only climate impact-drivers (wind 
speed, temperature and radiation) are allowed to modulate supply, 
demand and resulting SDM, while non-climatic conditions (for exam-
ple, system infrastructures) are kept constant.

•	 Relative changes of supply (%) are not influenced by IA but only 
caused by changes in wind/solar power density.

•	 Relative changes of demand (%) are not influenced by Dbase but 
only caused by changes in temperature.

Step 7: Calculate SDMfuture on the basis of future supply and demand 
according to equation (1). The change from SDMpresent to SDMfuture is 
only influenced by climate-driven relative changes in supply and 
demand but is not influenced by Dbase and IA. In addition, control experi-
ments are performed to disentangle relative contributions of climate 
mean-induced supply/demand mean and climate variability-induced 
supply/demand variability to SDM changes. Please refer to the fol-
lowing section on Climate change impacts on supply–demand match 
for details.

Step 8: Implications for local energy planner or stakeholder. If 
SDMfuture is lower than SDMpresent, it would require additional supply 
to meet the demand in the context of planned level of dependence on 
wind/solar energy supply. Otherwise, the SDMM would cause power 
outages.

In addition, a relevant example can be found in Supplementary 
Note 1.

Climate change impacts on supply and demand
For the demand, we focus on relative changes of the temperature- 
responsive heating and cooling demand caused by climate change. The 
actual daily heating and cooling demand profile in a planned energy 
system is not available. However, many previous efforts robustly 
showed that intra-annual variations of heating and cooling demand 
always strongly depend on temperature18–20,22,23: hot days lead to higher 
demand for cooling and cold days lead to higher demand for heating. 
Therein, there are three most critical parameters: (1) the temperature 
that minimizes demand, i.e. the temperature corresponding to Dbase 
(Tbase); (2) the sensitivity of demand changes to heating (βheat): the per-
centage increment of demand relative to Dbase per 1 °C when T < Tbase; 
and (3) the sensitivity of demand changes to cooling (βcool): the per-
centage increment of demand relative to Dbase per 1 °C when T > Tbase. 
We compiled previous literature and found that Tbase, βheat and βcool 
are not uniform, varying with many local conditions (infrastructure, 
social-economic conditions, custom and so on). They probably lie in 
a range as below: Tbase spans from 12 to 22 °C; βheat spans from 2% to 5%  
per °C; and βcool spans from 3% to 8% per °C. Since these parameters are  
not available at every location at the global scale, we propose two sce-
narios at each location that can mostly capture the range of demand 
responses to temperature: (1) a high-sensitivity one: Tbase = 18 °C, 
βcool = 5% per °C and βheat = 8% per °C; and (2) a low-sensitivity one: 
Tbase = 18 °C, βheat = 2% per °C and βcool = 3% per °C.

The absolute number of Dbase in this study is decided by any 
energy system planner or stakeholder within one grid cell (around 
110 × 110 km2 at the equator). The local energy system may be a few 
households, a county or a city. Given Dbase, Tbase, βheat, βcool and present 
Tt (T at day t), the present daily demand profiles and Dtotal, present can be 
derived by solving equation (11).

Dtotal =
n
∑
1
(Dcool,t + Dheat,t + Dbase), t ∈ [1,n]

Dcool,t = {
(Tt − Tbase) × βcool × Dbase, Tt ≥ Tbase
0, Tt < Tbase

Dheat,t = {
(Tbase − Tt) × βheat × Dbase, Tt ≤ Tbase
0, Tt > Tbase

(11)

With climate change, we apply future T, constant Dbase, βheat, βcool and 
equation (11) to derive future daily demand profiles and future total 
demand. Therefore, climate change impacts on demand are only due 
to changes in T. We acknowledge potential nonlinearity of the heating 
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and cooling demand response in the tails of temperature distribution 
but do not account for them due to the lack of data.

For the supply, daily variations of supply are computed on the 
basis of the wind and solar power density and the IA. We applied the 
climate simulations from 12 GCMs to compute the global wind and 
solar power density productions under present climate (1985–2014) 
and future climate. Given each SDMpresent, present daily demand and 
present daily power density, the required IA of wind or solar plants can 
be derived according to equation (12).

St = IAwind/PV × Ewind/PV,t, t ∈ [1,n]

Dmet,t = {
Dt, St ≥ Dt
St, St < Dt

SDMpresent =

n
∑
1
Dmet,t
n
∑
1
Dt

× 100%

(12)

where t is time step under present climate; S is present wind or solar 
supply (kWh d−1); IA is installation area (m2); E is present power density 
(kWh d−1 m2); D is present demand (kWh d−1); and Dmet is demand met by 
supply (kWh d−1). Then, supply profiles under present climate (Spresent) 
are derived by scaling present power density profiles with IA. With 
climate change, we apply simulated future power density profiles and 
constant IA to determine future supply profiles (Sfuture) as well. There-
fore, the climate impact on supply here is only caused by changes in 
climate-driven power density (E).

Climate change impacts on supply–demand match
The SDM is quantified by the fraction of total demand met by wind 
or solar supply over a temporal period, as equation (1): 100% means 
a full match; 0% means a least match. For each grid cell, we ensure 
the same SDMpresent under present climate (1985–2014). The climate 
change impacts on SDM can be derived by taking the percentage dif-
ferences between the two periods (∆SDM = (SDMfuture − SDMpresent)/
SDMpresent − 100%).

First, we assess climate change impacts on the supply and demand 
separately and try to disentangle their respective consequences on 
SDM. To investigate SDM changes driven by the supply alone, we 
use present and future supply profiles (daily time series) but control 
demand is invariant to temperature changes (that is, demand is con-
stant over time). Hence, present and future profiles only differ in the 
supply and it allows the isolation of climate change impacts on SDM 
caused by the supply alone. We also directly replace future demand 
profiles with present demand profiles (that is, demand is not constant 
but can vary with daily temperature), the resulting changes in SDM 
are similar (Supplementary Fig. 11). To investigate the SDM changes 
driven by the demand alone, we use present and future demand pro-
files but replace future supply profiles with present supply profiles. 
Hence, present and future profiles only differ in the demand and it 
allows the isolation of climate change impacts on SDM caused by the 
demand alone.

Second, we combine present and future supply and demand 
together and explore whether combining them would ‘counterbal-
ance’ or ‘enlarge’ SDM changes driven by supply/demand alone. In 
this case, present and future supply and demand profiles are all used. 
Hence, the differences in SDM are caused by the synthesized effects 
of supply and demand.

Third, since climate change includes both changes in climate mean 
(long-term mean of climate state) and climate variability (day-to-day 
variability), we also perform control experiments to disentangle their 
relative contributions to SDM changes. To isolate the part of climate 
variability, for instance, we control μSpresent = μSfuture by weighting future 
profiles with a ratio: Sfuture = SfutureμSpresent /μSfuture. μ is the mean temporal 
value for each grid cell. Hence, present and ‘adjusted’ future supply 

profiles only differ in the variability and it allows the isolation of climate 
change impacts on supply-induced SDM caused by the climate variabil-
ity alone. To isolate the part of climate mean, future supply profiles are 
equal to present profiles in variability by replacing future profiles with 
weighted present profiles: Sfuture = SpresentμSfuture /μSpresent. Hence, present 
and ‘adjusted’ future profiles only differ in the mean and it allows the 
isolation of climate change impacts caused by the climate mean alone. 
We apply the same attribution approach to demand profiles or sup-
ply–demand profiles together. The verification suggests that the attri-
bution approach is reliable (Supplementary Fig. 12).

In addition, by adopting the general framework from climate 
science to investigate climate and weather extremes (for example, 
droughts and heatwaves), we define daily SDMM (100% − SDM) and 
two finer metrics: (1) SDMM frequency: the proportion of days with 
daily SDM < 100% and (2) SDMM intensity: the average fraction of 
unmet demand to total demand during days with daily SDM < 100%. 
These two metrics provide finer characteristics of daily SDMM changes 
from climate change.

Climate change adaptation
To adapt to climate change negative impacts on SDM, two strategies 
are proposed:

	(1)	 Adding IA into the future energy system: we add IAwind and IAPV 
by 1–100% in the future. Therefore, the future wind and solar 
supply is anticipated to increase and match more demand. 
Comparing new SDMfuture at different IA levels with SDMpresent can 
determine whether new SDMfuture can recover to SDMpresent. If yes, 
we can derive the precise level of IA needed.

	(2)	 Adding energy storage into the future energy system: we  
add energy storage with the size ranging from 1 to 20 days  
in the future. For instance, 1 day means the storage can store 1  
unit of averaged daily demand under present climate. If the 
supply could meet the demand, storage would be charged with 
excess supply, if available, until the storage is full, after which 
supply can be curtailed. By contrast, if supply cannot meet 
demand, storage, if available, would be discharged to fill the 
demand gap until storage is emptied. Therefore, the supply is 
better used to match demand, which is likely to increase SDM. 
Comparing new SDMfuture at different energy storage sizes with 
SDMpresent can determine whether new SDMfuture can recover to 
SDMpresent. If yes, we can derive the precise energy storage size 
needed.

Midterm climate change impacts
To investigate midterm climate change impacts on SDM of global wind 
and solar energy systems, we calculate the differences of SDM between 
future midterm climate (2041–2070) and present climate (1985–2014); 
that is, ∆SDM = (SDM2041–2070 − SDM1985–2014)/SDM1985–2014 × 100%. As 
expected, compared to long-term impacts, Supplementary Fig. 13 
shows that midterm climate change impacts on SDM are much smaller 
in magnitude (lowered by 42% and 49% for wind and solar systems on 
average). These results suggest that climate change impacts on SDM 
of wind and solar energy systems depend on the global warming level, 
timing and so on.

All estimates are first computed separately for each of the CMIP6 
GCMs and are then regridded to the horizontal resolution of 1° × 1° 
for further analyses. Stippling in the plots indicates regions where the 
detected changes are robust; that is, 9 out of 12 models in the cluster 
agree on the sign of the changes.

Data availability
Climate model simulations are publicly available from Earth System 
Grid Federation: https://esgf-node.llnl.gov/search/cmip6/. Source 
data are provided with this paper.
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Code availability
Codes are publicly available at Zenodo: https://doi.org/10.5281/
zenodo.6884124.

References
1.	 World Energy Outlook (International Energy Agency, 2021).
2.	 Davis, S. J. et al. Net-zero emissions energy systems. Science 360, 

eaas9793 (2018).
3.	 He, G. et al. Rapid cost decrease of renewables and storage 

accelerates the decarbonization of China’s power system. Nat. 
Commun. 11, 2486 (2020).

4.	 Gernaat, D. E. H. J. et al. Climate change impacts on renewable 
energy supply. Nat. Clim. Change 11, 362 (2021).

5.	 van Ruijven, B. J., De Cian, E. & Wing, I. S. Amplification of future 
energy demand growth due to climate change. Nat. Commun. 10, 
2762 (2019).

6.	 Arvizu, D. et al. in IPCC Special Report on Renewable Energy 
Sources and Climate Change Mitigation (eds Edenhofer, O. et al.) 
(Cambridge Univ. Press, 2011).

7.	 Clark, L. et al. in Climate Change 2022: Mitigation of Climate 
Change (eds Shukla, P. R. et al.) 666–670 (Cambridge Univ. Press, 
2022).

8.	 Yalew, S. G. et al. Impacts of climate change on energy systems in 
global and regional scenarios. Nat. Energy 5, 794–802 (2020).

9.	 Pryor, S. C., Barthelmie, R. J., Bukovsky, M. S., Leung, L. R. & 
Sakaguchi, K. Climate change impacts on wind power generation. 
Nat. Rev. Earth Environ. 1, 627–643 (2020).

10.	 Feron, S., Cordero, R. R., Damiani, A. & Jackson, R. B. Climate 
change extremes and photovoltaic power output. Nat. Sustain. 4, 
270–276 (2021).

11.	 Pryor, S. C. & Barthelmie, R. J. A global assessment of extreme 
wind speeds for wind energy applications. Nat. Energy 6, 268–276 
(2021).

12.	 Wohland, J. Process-based climate change assessment for 
European winds using EURO-CORDEX and global models. 
Environ. Res. Lett. 17, 124047 (2022).

13.	 Allen, M. R., Fernandez, S. J., Fu, J. S. & Olama, M. M. Impacts 
of climate change on sub-regional electricity demand and 
distribution in the southern United States. Nat. Energy 1,  
16103 (2016).

14.	 Mays, J. et al. Private risk and social resilience in liberalized 
electricity markets. Joule 6, 369–380 (2022).

15.	 Bruch, M. et al. Power Blackout Risks: Risk Management Options 
Emerging Risk Initiative (CRO Forum, 2011).

16.	 Karnauskas, K. B., Lundquist, J. K. & Zhang, L. Southward shift 
of the global wind energy resource under high carbon dioxide 
emissions. Nat. Geosci. 11, 38–43 (2018).

17.	 Cong, S. C., Nock, D., Qiu, Y. L. & Xing, B. Unveiling hidden energy 
poverty using the energy equity gap. Nat. Commun. 13, 2456 
(2022).

18.	 Wenz, L., Levermann, A. & Auffhammer, M. North–south 
polarization of European electricity consumption under future 
warming. Proc. Natl Acad. Sci. USA 114, E7910–E7918 (2017).

19.	 Auffhammer, M., Baylis, P. & Hausman, C. H. Climate change is 
projected to have severe impacts on the frequency and intensity 
of peak electricity demand across the United States. Proc. Natl 
Acad. Sci. USA 114, 1886–1891 (2017).

20.	 Isaac, M. & van Vuuren, D. P. Modeling global residential sector 
energy demand for heating and air conditioning in the context of 
climate change. Energy Policy 37, 507–521 (2009).

21.	 Rode, A. et al. Estimating a social cost of carbon for global energy 
consumption. Nature 598, 308–314 (2021).

22.	 Deroubaix, A. et al. Large uncertainties in trends of energy 
demand for heating and cooling under climate change. Nat. 
Commun. 12, 5197 (2021).

23.	 De Cian, E. & Wing, I. S. Global energy consumption in a warming 
climate. Environ. Resour. Econ. 72, 365–410 (2019).

24.	 Jerez, S. et al. The impact of climate change on photovoltaic 
power generation in Europe. Nat. Commun. 6, 10014 (2015).

25.	 Seneviratne, S. I. et al. in Climate Change 2021: The Physical 
Science Basis (eds Masson-Delmotte, V. et al.) 1513–1766 
(Cambridge Univ. Press, 2021).

26.	 Mastrucci, A., van Ruijven, B., Byers, E., Poblete-Cazenave, M. & 
Pachauri, S. Global scenarios of residential heating and cooling 
energy demand and CO2 emissions. Clim. Change 168, 14 (2021).

27.	 Zeyen, E., Hagenmeyer, V. & Brown, T. Mitigating heat demand 
peaks in buildings in a highly renewable European energy system. 
Energy 231, 120784 (2021).

28.	 Bell, N. O., Bilbao, J. I., Kay, M. & Sproul, A. B. Future climate 
scenarios and their impact on heating, ventilation and 
air-conditioning system design and performance for  
commercial buildings for 2050. Renew. Sust. Energy Rev. 162, 
112363 (2022).

29.	 Liu, L. et al. Optimizing wind/solar combinations at finer scales 
to mitigate renewable energy variability in China. Renew. Sustain. 
Energy Rev. 132, 110151 (2020).

30.	 Shaner, M. R., Davis, S. J., Lewis, N. S. & Caldeira, K. Geophysical 
constraints on the reliability of solar and wind power in the United 
States. Energy Environ. Sci. 11, 997–997 (2018).

31.	 Perera, A. T. D., Nik, V. M., Chen, D. L., Scartezzini, J. L. &  
Hong, T. Z. Quantifying the impacts of climate change and 
extreme climate events on energy systems. Nat. Energy 5, 
150–159 (2020).

32.	 Bartos, M. et al. Impacts of rising air temperatures on electric 
transmission ampacity and peak electricity load in the United 
States. Environ. Res. Lett. 11, 114008 (2016).

33.	 Liu, L. B. et al. Potential contributions of wind and solar power  
to China’s carbon neutrality. Resour. Conserv. Recycl. 180,  
106155 (2022).

34.	 Kittner, N., Lill, F. & Kammen, D. M. Energy storage deployment 
and innovation for the clean energy transition. Nat. Energy 2, 
17125 (2017).

35.	 Winterfeldt, J. & Weisse, R. Assessment of value added for surface 
marine wind speed obtained from two regional climate models. 
Mon. Weather Rev. 137, 2955–2965 (2009).

36.	 Carvalho, D., Rocha, A., Costoya, X., DeCastro, M. & 
Gomez-Gesteira, M. Wind energy resource over Europe under 
CMIP6 future climate projections: what changes from CMIP5 to 
CMIP6. Renew. Sust. Energy Rev. 151, 111594 (2021).

37.	 Kozarcanin, S., Liu, H. L. & Andresen, G. B. 21st century 
climate change impacts on key properties of a large-scale 
renewable-based electricity system. Joule 3, 992–1005 (2019).

38.	 Craig, M. T., Carreno, I. L., Rossol, M., Hodge, B. M. & Brancucci, C. 
Effects on power system operations of potential changes in wind 
and solar generation potential under climate change. Environ. 
Res. Lett. 14, 034014 (2019).

39.	 Craig, M. T. et al. Overcoming the disconnect between  
energy system and climate modeling. Joule 6, 1405–1417  
(2022).

40.	 IPCC: Summary for Policymakers. In Climate Change 2021: 
The Physical Science Basis (eds Masson-Delmotte, V. et al.) 
(Cambridge Univ. Press, 2021).

41.	 Pryor, S. C., Nielsen, M., Barthelmie, R. J. & Mann, J. Can satellite 
sampling of offshore wind speeds realistically represent wind 
speed distributions? Part II: Quantifying uncertainties associated 
with distribution fitting methods. J. Appl. Meteorol. 43,  
739–750 (2004).

42.	 Irwin, J. S. Theoretical variation of the wind profile power-law 
exponent as a function of surface-roughness and stability. Atmos. 
Environ. 13, 191–194 (1979).

http://www.nature.com/natureenergy
https://doi.org/10.5281/zenodo.6884124
https://doi.org/10.5281/zenodo.6884124


Nature Energy | Volume 8 | August 2023 | 870–880 880

Article https://doi.org/10.1038/s41560-023-01304-w

43.	 Iturbide, M. et al. An update of IPCC climate reference regions  
for subcontinental analysis of climate model data: definition  
and aggregated datasets. Earth Syst. Sci. Data 12, 2959–2970 
(2020).

Acknowledgements
We acknowledge the World Climate Research Programme,  
which, through its Working Group on Coupled Modelling, 
coordinated and promoted CMIP6. We thank the climate modelling 
groups for producing and making available their model output, 
the Earth System Grid Federation (ESGF) for archiving the data 
and providing access and the multiple funding agencies who 
support CMIP6 and ESGF. We thank all contributors to the CMIP6 
experiments. We thank W. Jan for useful discussions. We thank 
B. Zhu for producing material images used in Fig. 1. This study 
is funded by the Second Tibetan Plateau Scientific Expedition 
and Research Program (no. 2019QZKK1001) and National Natural 
Science Foundation of China (no. 42230506). L.L. acknowledges 
support from China Scholarship Council (no. 201806010309); 
G.H. acknowledges support from the Global Energy Initiative at 
ClimateWorks Foundation (no. 23-2515); and G.L. acknowledges 
support from the National Natural Science Foundation of China  
(no. 71991484).

Author contributions
L.L. conceived the original idea. L.L. and M.W. designed the 
experiments with contributions from G.H. S.L. and M.W. conducted  
the wind energy assessments. L.L. conducted all other data analyses. 
L.L. drafted the paper with contributions from all co-authors.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary 
material available at https://doi.org/10.1038/s41560-023-01304-w.

Correspondence and requests for materials should be addressed to 
Laibao Liu or Mengxi Wu.

Peer review information Nature Energy thanks Bastiaan van Ruijven 
and the other, anonymous, reviewer(s) for their contribution to the 
peer review of this work.

Reprints and permissions information is available at  
www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons 
Attribution 4.0 International License, which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, 
as long as you give appropriate credit to the original author(s) and the 
source, provide a link to the Creative Commons license, and indicate 
if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless 
indicated otherwise in a credit line to the material. If material is not 
included in the article’s Creative Commons license and your intended 
use is not permitted by statutory regulation or exceeds the permitted 
use, you will need to obtain permission directly from the copyright 
holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.

© The Author(s) 2023

http://www.nature.com/natureenergy
https://doi.org/10.1038/s41560-023-01304-w
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Climate change impacts on planned supply–demand match in global wind and solar energy systems

	Approach

	Supply-driven SDM changes with controlled demand

	Demand-driven SDM changes with controlled supply

	SDM changes driven by both supply and demand

	Daily frequency and intensity of supply–demand mismatch

	Climate change adaptation

	Discussion and conclusions

	Methods

	Global climate models

	Wind power density

	Solar power density

	Climate change impact analysis procedures

	Climate change impacts on supply and demand

	Climate change impacts on supply–demand match

	Climate change adaptation

	Midterm climate change impacts


	Acknowledgements

	Fig. 1 Conceptual illustrations of climate change impacts on supply, demand and SDM of wind and solar energy systems.
	Fig. 2 Climate change impacts on SDM arising from supply alone for wind and solar systems globally.
	Fig. 3 Climate change impacts on SDM arising from demand alone for wind and solar systems globally.
	Fig. 4 Climate change impacts on SDM arising from both supply and demand for wind and solar systems globally.
	Fig. 5 Regional climate change impacts on supply, demand and SDM for wind and solar systems globally.




