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Increasingly negative tropical water–
interannual CO2 growth rate coupling

Laibao Liu1 ✉, Philippe Ciais2, Mengxi Wu3, Ryan S. Padrón1, Pierre Friedlingstein4, 
Jonas Schwaab1, Lukas Gudmundsson1 & Sonia I. Seneviratne1

Terrestrial ecosystems have taken up about 32% of the total anthropogenic CO2 
emissions in the past six decades1. Large uncertainties in terrestrial carbon–climate 
feedbacks, however, make it difficult to predict how the land carbon sink will respond 
to future climate change2. Interannual variations in the atmospheric CO2 growth rate 
(CGR) are dominated by land–atmosphere carbon fluxes in the tropics, providing an 
opportunity to explore land carbon–climate interactions3–6. It is thought that 
variations in CGR are largely controlled by temperature7–10 but there is also evidence 
for a tight coupling between water availability and CGR11. Here, we use a record of 
global atmospheric CO2, terrestrial water storage and precipitation data to investigate 
changes in the interannual relationship between tropical land climate conditions and 
CGR under a changing climate. We find that the interannual relationship between 
tropical water availability and CGR became increasingly negative during 1989–2018 
compared to 1960–1989. This could be related to spatiotemporal changes in tropical 
water availability anomalies driven by shifts in El Niño/Southern Oscillation 
teleconnections, including declining spatial compensatory water effects9. We also 
demonstrate that most state-of-the-art coupled Earth System and Land Surface 
models do not reproduce the intensifying water–carbon coupling. Our results 
indicate that tropical water availability is increasingly controlling the interannual 
variability of the terrestrial carbon cycle and modulating tropical terrestrial carbon–
climate feedbacks.

The interannual variations (IAV) of the CO2 growth rate (CGR) are 
found to be strongly correlated with El Niño/Southern Oscillation 
(ENSO)12,13 (for example, R = −0.55, P < 0.05 in ref. 12, Pearson cor-
relation coefficient), particularly with tropical temperature varia-
tions7–9 (for example, R = 0.7, P < 0.01 in ref. 7), despite the lower IAV 
of tropical temperature than for other locations14. The historical IAV 
sensitivity of CGR to tropical temperature was further identified as 
an observational constraint that can significantly lower uncertainties 
in projected tropical carbon budgets5. Compared to tropical tem-
perature, concurrent tropical precipitation is not well correlated with 
CGR15,16 (for example, R = −0.19, P > 0.1 in ref. 16) but lagged tropical 
precipitation was shown to strongly explain the IAV of CGR or tropi-
cal net land carbon flux7,17(for example, R = −0.5, P < 0.05 in ref. 7), 
resulting in an ambiguous role of water availability in controlling CGR 
from a process perspective. Recently, the launch of twin satellites 
of the Gravity Recovery and Climate Experiment (GRACE) enabled 
the direct measurement of terrestrial water storage (WS) variability, 
and a subsequent analysis showed that it is tightly coupled to CGR11 
(R = −0.85, P < 0.01). However, in the context of climate change, it 
remains unclear whether the identified terrestrial climate–carbon 
coupling is constant over time or may vary subject to changes in cli-
mate forcers and mean climate.

Here, we investigate the changes in the interannual relationship 
between tropical land climate conditions and CGR over the past  
decades. To complement the shorter observational record of the GRACE 
satellites, we also use recently reconstructed long-term WS variability18.  
Furthermore, the 6-month lagged yearly precipitation (LagP) can 
approximate aggregated tropical WS IAV well and correlates with 
CGR IAV, emerging as another efficient proxy for tropical terrestrial 
water availability IAV (Methods). This also helps to explain why lagged  
precipitation correlated well with CGR in previous findings7,17.

Observed climate–carbon coupling
All variables are detrended at yearly time scale by removing the 
long-term linear trend, as we focus on the relationship in interannual 
variability. The years following the eruptions of Mount Agung (1962 
and 1963), El Chichón (1982) and Mount Pinatubo (1991–1993) are also 
excluded from analyses to avoid perturbations of unusual carbon flux 
anomalies19. For the entire 1960–2018 period, CGR is significantly cor-
related with both tropical temperature (RT,CGR = 0.64, P < 0.01, Pear-
son correlation coefficient) and tropical WS (RWS,CGR = −0.58, P < 0.01) 
(Fig. 1a). The opposite sign in the two relationships suggests that hot-
ter (positive temperature anomaly) and drier (negative WS anomaly) 

https://doi.org/10.1038/s41586-023-06056-x

Received: 5 January 2022

Accepted: 5 April 2023

Published online: 31 May 2023

Open access

 Check for updates

1Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland. 2Laboratoire des Sciences du Climat et de l’Environnement, CEA-CNRS-UVSQ, Université Paris Saclay, 
Gif-sur-Yvette, France. 3Joint Institute for Regional Earth System Science and Engineering (JIFRESSE), University of California, Los Angeles, Los Angeles, CA, USA. 4College of Engineering, 
Mathematics and Physical Sciences, University of Exeter, Exeter, UK. ✉e-mail: laibao.liu@env.ethz.ch

https://doi.org/10.1038/s41586-023-06056-x
http://crossmark.crossref.org/dialog/?doi=10.1038/s41586-023-06056-x&domain=pdf
mailto:laibao.liu@env.ethz.ch


756 | Nature | Vol 618 | 22 June 2023

Article

climate conditions generally dampened the land carbon sink and thus 
enhanced atmospheric CO2 growth in the past decades. There is also a 
small proportion of CGR that does not fit the general pattern, suggest-
ing the role of other factors, such as exceptional (nonlinear) anthro-
pogenic emissions or ocean carbon sink.

Next, we investigate how the correlation between climate and CGR 
changes from the first 30 years (1960–1989) to the most recent 30 years 
(1989–2018). The uncertainty of the correlation is quantified through 
bootstrapping (5,000 replications). The results show that the bootstrap 
distributions of temperature–CGR correlations are similar between 
the two periods but water–CGR correlations are significantly differ-
ent between the two periods (based on the Wilcoxon signed-rank test, 
P < 0.05) and become more negative over time (Fig. 1b and Extended 
Data Table 1). To check whether this increasingly negative water–carbon 
correlation is influenced by the possible confounding water–tempera-
ture coupling, we look at the temporal dynamic of water–temperature 

correlations and find that they are stable over time (Supplementary 
Fig. 1). Partial correlations remove water–temperature correlations 
and their relative changes directly help to confirm that the increasingly 
negative tropical water–carbon correlation remains robust (Fig. 1c). 
We note that because terrestrial water variability can also indirectly 
influence the land carbon cycle by triggering atmospheric temperature 
extremes through the well-documented soil moisture–atmosphere 
feedbacks20,21, it could be inappropriate to interpret partial correla-
tion RW,CGR|T as total water impacts on CGR in the two periods, but the 
temporal changes of RW,CGR|T are useful here (Methods). In addition, we 
compute climate–CGR correlations for a 25-year moving window to 
provide insights into the gradual changes, which are quite smooth over 
time (Supplementary Fig. 2). To further test the robustness of changes 
in the interannual correlations between tropical water and CGR, we also 
consider alternative observation datasets of tropical yearly precipita-
tion and tropical temperature (Extended Data Fig. 1a). To verify that 
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Fig. 1 | Tropical land climate–carbon interannual relationships. a, Yearly 
tropical temperature versus tropical WS versus CGR in detrended anomalies. 
The values of CGR are indicated by the colour bar. b, Histograms of climate–
CGR interannual correlations in the first three decades (1960–1989) and in the 
more recent three decades (1989–2018), derived using 5,000 bootstrapping 
repeats. Both tropical WS and LagP are used to represent tropical water 
availability. c, As for b but showing histograms of the partial correlations of 
CGR to tropical temperature and tropical water after controlling tropical water 
and tropical temperature, respectively. d, Histograms of the interannual 

sensitivity of CGR to tropical WS (γWS) and LagP (γLagP) in the univariate 
regression for the same two periods, derived using 5,000 bootstrapping 
repeats. Unlike correlations, γWS and γLagP differ in magnitude because of the 
differences in WS and LagP IAV magnitude and are therefore shown separately. 
The unit of this sensitivity is PgC yr−1 per Tt H2O. e, As for d but showing γWS and 
γLagP estimated using the bivariate regression with both tropical water and 
tropical temperature as predictors. Ridge regression is used here to reduce 
biases from high collinearity between water and temperature (Methods).
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the IAV in CGR does not primarily originate from fossil fuel emissions, 
land-use change and ocean uptake, we also use the residual land sink 
(RLS) instead of CGR (Extended Data Fig. 1b). These results all point to 
an increasingly negative correlation between tropical water and CGR 
on the interannual scale over the past decades.

The sensitivity of CGR IAV to tropical water is further estimated using 
linear regressions, defined as the slope of the regression between CGR 
and climate, with both variables detrended. In alignment with correla-
tions, we first perform a univariate regression in which CGR is the func-
tion of tropical water alone to avoid possible underestimations of the 
sensitivity of CGR to tropical water variations. The univariate sensitivity 
of CGR to tropical WS and LagP increased (more negative) by about 35% 
on average from the previous 30 years (1960–1989) to the more recent 
30 years (1989–2018) (Fig. 1d and Extended Data Table 1). For instance, 
the sensitivity to tropical WS increased from −0.95 ± 0.27 PgC yr−1 per 
Tt H2O (teratonnes of water) to −1.26 ± 0.23 PgC yr−1 per Tt H2O during 
the same two periods. We also perform bivariate linear regression with 
both tropical temperature and tropical water as predictors, and the 
sensitivity of CGR to tropical water variations is not significantly dif-
ferent from 0 in the first 30 years but becomes significantly negative 
in the recent 30 years (P < 0.05) (Fig. 1e). We use the ridge regression to 
reduce the effects of high collinearity between water and temperature 
on sensitivity estimates, but the ordinary least squares (OLS) regres-
sion also yields increasingly negative sensitivity over time (Extended 
Data Table 1). In addition, results based on a moving 25-yr window 
show that the sensitivity stalls within the recent 34-yr period, that is, 
after the time window centred on 1997 (1985–2009) (Supplementary 
Fig. 3). These results together suggest that the interannual relationship 

between tropical water and CGR has become increasingly negative 
in the recent past (1989–2018) compared to previous climate condi-
tions (1960–1989). Also, we find that the amplitude of temperature 
sensitivity enhancement from the bivariate regression is smaller than 
that previously reported16,22, if WS or LagP, rather than concurrent 
precipitation, is used as the proxy for water availability (Extended Data 
Fig. 2). This is because the accurate proxy for water availability was 
not identified and available (that is, using concurrent precipitation 
(reported RPre,CGR = −0.19, P > 0.1 in ref. 16) rather than WS or LagP as 
the proxy starting from 1960 (RLagP,CGR = −0.68, P < 0.01; Extended Data 
Fig. 3b)). Moreover, we extend the analysis time period by including 
2011 to 2018 and observe a recent declining temperature sensitivity. 
All these results emphasize that it is crucial to integrate water avail-
ability into the carbon–climate feedback metric for better estimating 
climate-driven changes in tropical terrestrial carbon sink.

ENSO teleconnections
Interannual changes in tropical climate are largely driven by ENSO23. 
Under anthropogenic warming, growing observational evidence shows 
robust changes in ENSO characteristics, such as increases in frequency 
and variability with shifts in types24, especially the largest sea surface 
temperature (SST) anomaly shifts from the Eastern Pacific (EP) to the 
Central Pacific (CP) since the 1990s25–28. As a result, it is likely to alter 
the patterns of moisture and heat fluxes over tropical continents, for 
instance, triggering more extreme droughts and fires29 and thus modu-
lating terrestrial carbon–climate feedbacks. Indeed, we find that most 
years with high spatial coherence of tropical WS anomalies are ENSO 
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Fig. 2 | Influence of ENSO on tropical land water–carbon coupling.  
a, Year-to-year variations of spatial coherence of tropical WS anomaly and 
ENSO. All years are classified into three subsets according to the level of spatial 
coherence: low level (0th to 33.3th percentile); medium level (33.3th to 66.6th 
percentile); and high level (66.6th to 100th percentile). Year is considered 
Eastern Pacific (EP) ENSO when the largest DJF SST anomaly over the region of 
2° S–2° N, 110° E–90° W lies in the Eastern Pacific (east of 150° W) and Nino3 
index exceeds 1 s.d. Year is considered Central Pacific (CP) ENSO when the 

corresponding largest DJF SST anomaly lies in the Central Pacific (west of 
150° W) and Nino4 index exceeds 1 s.d. Volcano years are excluded from 
analyses. Grey vertical dashed lines connect the symbols of high spatial 
coherence and ENSO. b, Fraction of years with high spatial coherence within 
the first 30-yr period (1960–1989) and within the recent 30-yr period (1989–
2018). Neutral years are identified as years not in the EP ENSO or CP ENSO state. 
c, Dependence of RWS,CGR and RWS,CGR|T on the spatial coherence of WS anomaly. 
**P < 0.05 (significant correlation).
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years (Fig. 2a,b), for which spatial coherence is quantified by applying a 
metric adjusted from ref. 9 (Methods). There is still a small proportion 
of high spatial coherence that cannot be explained by ENSO, suggesting 
a role for other factors, such as the tropical Atlantic variability30,31 and 
the Indian Ocean Dipole32,33. Compared to ENSO-neutral years, spatial 
patterns of WS anomaly during ENSO years are quite uniform (Extended 
Data Fig. 4). Then, from the first 30 years (1960–1989) to the most recent 
30 years (1989–2018), the fraction of years at high spatial coherence lev-
els increases from 30% to 41% because of increased contributions of CP 
ENSO and fewer neutral years (Fig. 2b). These results could be important 
because the dominant role of water availability in controlling carbon 
fluxes at a larger scale is affected by the spatial compensatory degree 
of water anomalies: water availability clearly dominates carbon flux 
IAV locally but this control could partly be spatially counterbalanced 
when aggregated9. To further confirm the effects of spatial coherence 
on tropical water–CGR coupling, we perform a new subset analysis. 
We first detrend all years of data by removing the long-term trend and 
then bin them into three subsets according to spatial coherence levels. 
The RWS,CGR is highly negative only when the spatial coherence is high 
(Fig. 2c). The RWS,CGR|T confirms that this dependence of water–car-
bon coupling on spatial coherence is not influenced by confounding 
temperature effects. Similar results are found when we replace WS 
with LagP (Supplementary Fig. 4). The sensitivity of CGR to WS is also 
expected to become apparently negative only when the spatial coher-
ence is high (Supplementary Fig. 5). Another subset analysis using a 
25-year moving window also supports the idea that the enhanced spatial 
coherence strengthens the increasingly negative tropical water–CGR 
coupling (Supplementary Fig. 6). These results indicate that identified 
ENSO-driven enhancement of spatial coherence over time is a likely 
explanation for the increasingly negative coupling between tropi-
cal water and CGR IAV. In the future, if CP ENSO events become more 
common with global warming, as predicted34, tropical water might 
continue to increasingly control tropical terrestrial sink IAV. Further 
investigations on different impacts of EP ENSO and CP ENSO events 
on the terrestrial carbon cycle are useful to better understand future 
carbon–climate feedbacks35,36.

Diagnosis of CMIP6 models
The observational relationships between tropical climate and CGR 
are valuable metrics to diagnose the ability of models to simulate ter-
restrial climate–carbon interannual variability. We thus investigate 
whether state-of-the-art models participating in the Coupled Model 
Intercomparison Project Phase 6 (CMIP6) can capture this observed 
feature. We calculate the interannual correlation between tropical 
WS (using tropical total soil moisture as proxy) and simulated global 
net ecosystem exchange (NEE, ecosystem respiration minus photo-
synthesis) estimated by an ensemble of nine coupled Earth System 
Models (ESMs) and six offline Land Surface Models (LSMs) in the his-
torical 1960–2014 period (Methods). We find that the (partial) cor-
relations between simulated tropical soil moisture and global NEE 
are persistently high and thus remain almost unchanged over time 
in most ESMs and LSMs (Fig. 3a and Extended Data Fig. 5). Also, most 
models do not reproduce the increased sensitivity of NEE to tropical 
soil moisture, even though they differ largely in the absolute magni-
tude of the sensitivity (Extended Data Fig. 6). These results indicate 
that models do not capture the observed emerging enhancement of 
tropical water–carbon coupling over time, although models roughly 
capture the sign and strength of this interannual water–carbon rela-
tionship during 1960–2014 (Fig. 3b). The ability of models to reproduce 
observed tropical water–carbon coupling depends not only on the 
simulation of terrestrial water availability but also on process repre-
sentations of the response of the carbon cycle to climate. We further 
find that models might not represent the latter part well because the 
modelled water–carbon coupling is stable over time, regardless of 
the large differences among simulated soil moisture. Specifically, 
the dominant spatial patterns of simulated soil moisture anomalies 
are largely divergent among models (Supplementary Figs. 7 and 8), 
although simulated soil moisture from all offline models can generally 
capture ENSO teleconnections (Supplementary Fig. 9). For coupled 
ESMs, the underpinning reason is more complex, for instance, they 
have known issues in simulating the probability of occurrence of his-
torical EP ENSO and CP ENSO37. Compared to ecosystem respiration, 
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Fig. 3 | Historical tropical land water–carbon interannual correlations in 
observations and models. a, Changes in interannual correlations and partial 
correlations between tropical water availability and land carbon fluxes from 
the previous 27 years (1960–1986) to the recent 27 years (1988–2014). For 
partial correlations, tropical temperature is controlled. All variables are 
detrended at yearly scale in each corresponding window. For observations, 
CGR/RLS, reconstructed tropical WS/tropical LagP and tropical temperature 
are used for computations (n = 4). For models, global NEE, tropical total soil 

moisture and tropical temperature from each model are used for computations 
(coupled models, n = 9; offline models, n = 6). Box plots show the distribution 
of estimates for all models, solid horizontal lines indicate the median values, 
boxes cover the interquartile range, and vertical lines reach the 5th and 95th 
percentiles. b, Same as a but showing the interannual correlations and partial 
correlations between tropical water availability and land carbon fluxes during 
1960–2014.
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the simulated response of ecosystem gross primary production to 
soil moisture in models is more consistent (Supplementary Figs. 10 
and 11). Further including possible modelled carbon fluxes from fire 
and other disturbances, that is, replacing NEE with net biome produc-
tion, cannot help to explain the failure of models to reproduce the 
intensified water–carbon coupling (Supplementary Fig. 12). Models 
also possibly lack some critical process representations11, such as the 
parameterization of deep water uptake38, tree mortality39 and plant root 
adaptation-related characteristics40. Therefore, the ability of models 
to project future terrestrial carbon–climate feedbacks are subject to 
uncertainties and these results call for improvements on water–carbon 
interactions to better constrain projections.

Direct observations of tropical net and constituent carbon fluxes 
covering such a long time period are lacking, limiting spatially explicit 
attributions of changes in carbon fluxes to specific regions and under-
pinning drivers. Recent evidence shows that aboveground carbon 
(AGC) fluxes in tropical semi-arid biomes are strongly associated with 
CGR IAV during 2011–201741. Tropical AGC dynamics are retrieved 
from microwave satellite observations of vegetation optical depth 
(VOD). However, new evidence raises a caution about interpreting 
IAV of VOD-derived AGC (AGCVOD) as biomass IAV alone because this 
might be more directly linked to soil moisture42. Therefore, although 
we find increased semi-arid CGR-AGCVOD coupling in the recent 15 years 
(2002–2016) relative to the first 15 years (1989–2003) using the long-
est available Ku-band VOD following the approach of ref. 41 (Methods 
and Supplementary Fig. 13), the underpinning interpretations need 
further validations. Nonetheless, independent analyses from VOD 
imply that water-sensitive semi-arid ecosystems might have become 
more important for CGR IAV during the past three decades. Variations 
in other constituent carbon fluxes are still not available; for instance, 
the temporal dynamics of large-scale soil respiration and the tempera-
ture sensitivity of soil respiration are constrained by data availability 
and thus remain uncertain43. Other possible mechanisms that are not 
investigated here include synergy effects of other drought-induced 
disturbances (such as fire effects44), lasting effects of tree mortality 
on carbon uptake45 and decreasing temperature sensitivity of both 
tropical photosynthesis and/or soil respiration under global warming46. 
The most recent 30 years (1989–2018) overlaps with the decadal ‘global 
warming hiatus’ (1998–2012) in which natural internal variability, like 
ENSO, might play a part47. The effects of internal variability should not 
change the increased tropical water control on CGR IAV in the future 
because we have already taken ENSO into account. Further studies 
are required to investigate these potential mechanisms, for instance 
by integrating new observations from flux towers, field experiments 
and satellites48 to calibrate process-oriented models.

In summary, we demonstrate that tropical water availability is likely 
to have increasingly controlled interannual atmospheric CGR over the 
past 59 years. The dominant climate driver of the interannual variation 
of terrestrial carbon cycle has already shown a tendency to shift from 
temperature to water, suggesting rising water limitations on tropical 
terrestrial carbon sink. We therefore also partly reconcile the debate 
of water versus temperature controls for the land carbon cycle7,9,11 from 
the perspective of the considered time frames, in addition to the recent 
view that land–atmosphere feedback matters20. As the sensitivity of 
terrestrial carbon uptake to temperature is usually used as the metric 
to diagnose or constrain the terrestrial carbon–climate feedbacks49, we 
call for more attention to the relevance of tropical water in predicting 
next-year atmospheric CGR and we suggest it is timely to introduce 
water-based constraints on future tropical terrestrial carbon–climate 
feedbacks. Uncertainties in terrestrial carbon–climate feedbacks 
strongly affect the assessment of the magnitude of emission reduc-
tions required to achieve any global temperature target. Hence, the 
failure of state-of-the-art models to capture the observed increasingly 
negative coupling between tropical land water and interannual CGR 
calls for a better characterization of relevant processes to improve 

the representation of the terrestrial carbon cycle in ESMs and climate 
projections.
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Methods

CGR
Annual global atmospheric CGR spanning from 1960 to 2018 is obtained 
from the Greenhouse Gas Marine Boundary Layer Reference of the 
National Oceanic and Atmospheric Administration (NOAA/ESRL)50. 
According to the guideline, the annual CGR in a given year is the dif-
ference in CO2 concentration between the end of December and the 
start of January of that year. In addition, we also use the estimated RLS 
from the latest Global Carbon Budget 20201 to verify the robustness of 
our main finding (Extended Data Fig. 1b). RLS is inferred as a residual 
between emissions, atmospheric CO2 accumulation and the ocean sink.

Climate data
Terrestrial water storage and lagged precipitation. The twin GRACE 
satellites provide the measurement of changes in terrestrial WS at month-
ly scale since March 200251. In particular, terrestrial WS is the sum of all 
above- and below-surface WS, including soil moisture, groundwater, 
snow, ice and water stored in vegetation and rivers and lakes. To comple-
ment the shorter record of observations provided by the GRACE satel-
lites, we use a recently published statistical reconstruction of terrestrial 
WS that trained on the twin GRACE satellites18. The reconstructed ter-
restrial WS is based on two different GRACE solutions and three different 
meteorological forcing datasets. Here, we mainly use the ensemble mean 
of all members. The details of the statistical approach are documented in 
ref. 18. Validation against original terrestrial WS supports the reliability of 
reconstructions in reproducing historical signals at yearly time scale, in-
cluding tropics (Supplementary Fig. 14 and Supplementary Table 1). The 
reconstructed terrestrial WS dataset has a spatial resolution of 0.5° × 0.5° 
and a temporal resolution of one day from 1901 to 2018.

In addition, direct observations of LagP over tropical land are found 
to capture IAV of aggregated tropical WS anomaly at yearly time scale 
(Extended Data Fig. 3a and Supplementary Table 1). For instance, the 
LagP in 2018 is the sum up of the precipitation from July in 2017 to June 
in 2018. Moreover, consistent with previous findings7,17, the IAV of tropi-
cal land lagged precipitation correlates with CGR well (Extended Data 
Fig. 3b). This helps to explain the rationality of this relationship from the 
process of WS memory. Therefore, LagP is identified as another efficient 
proxy for aggregated tropical WS anomaly IAV. Precipitation is obtained 
from station-based Climate Research Unit (CRU) TS4.03 (ref. 52) and 
Global Precipitation Climatology Centre (GPCC) Full Data Monthly 
v.2020. To further confirm that the data quality of station-based tropi-
cal precipitation is reliable, we compare station-based CRU precipita-
tion with satellite-based Tropical Rainfall Measuring Mission (TRMM) 
precipitation (Extended Data Fig. 7a); we also compare CRU precipita-
tion with GPCC precipitation which has much larger gauge stations than 
CRU (Extended Data Fig. 7b). In fact, compared to the 2000s to 2010s 
(in which satellite observations confirm the reliability of station-based 
tropical precipitation IAV), the number of gauge stations was much 
larger in the 1960s–1990s (Extended Data Fig. 7c). These validations 
suggest that station-based tropical precipitation IAV is reliable during 
1960–2018. TRMM 3B43 precipitation dataset has a spatial resolution 
of 0.25° × 0.25° and a temporal resolution of 1 month from 1998 to 
2019. Both CRU and GPCC have a spatial resolution of 0.5° × 0.5° and 
a temporal resolution of 1 month from 1891 to 2018.

Therefore, we use yearly reconstructed tropical WS and LagP to indi-
cate the IAV of tropical terrestrial water availability anomaly.

Temperature. Temperature is obtained from CRU TS4.03 (ref. 52). The 
Berkeley Earth global surface temperature is also used for a robust 
test53. The two temperature datasets both have a spatial resolution 
of 0.5° × 0.5° and a temporal resolution of 1 month from 1901 to 2018.

Regional domain definition. Tropical lands are defined as the spatial 
average over all the vegetated land areas between 24° N and 24° S, as 

in ref. 7. Tropical semi-arid region domain consists of shrubland and 
(woody) savannah, which is identified according to the land-cover clas-
sification map from MODIS (MCD12C1, type3). The map was regridded 
using a majority filter to a spatial resolution of 0.5° × 0.5°.

ENSO indices. The ENSO is Earth’s most important source of inter-
annual climate variability. The areal averages of sea surface tem-
perature (SST) anomalies relative to a long-term average climatol-
ogy are used to characterize ENSO. The time period of 1960–2018 is 
used as the climatology here. The SST anomalies over Nino3.4 region 
(5° N–5° S,120° W–170° W) are most commonly used and included the 
signals of both EP ENSO and CP ENSO54. Year is considered EP ENSO 
when the largest DJF (December to February) SST anomaly over the 
region of 2° S–2° N, 110° E–90° W lies in the EP (east of 150° W) and 
Nino3 index exceeds 1 s.d. Year is considered CP ENSO when the cor-
responding largest DJF SST anomaly lies in the CP (west of 150° W) and 
Nino4 index exceeds 1 s.d. We note that the identification of ENSO types 
could vary with the method used27. This study uses the Extended Re-
construction Sea Surface Temperature (ERASST v.5) from the National 
Oceanic and Atmospheric Administration (NOAA). This dataset has a 
temporal resolution of 1 month from 1855 to the present and a spatial 
resolution of 2° × 2° (ref. 55).

CMIP6 models
Coupled ESM. Nine coupled ESMs participating in the sixth phase of 
Coupled Model Intercomparison Project (CMIP6) are used: CESM2, 
CNRM-ESM2-1, IPSL-CM6A-LR, MPI-ESM1-2-LR, UKESM1-0-LL, 
ACCESS-ESM1-5, CanESM5, MIROC-ES2L and NorESM2-LM. Coupled 
ESMs allow for feedbacks between the physical climate and the biologi-
cal and chemical processes in the ocean and on land. We adopted data 
output from the ‘historical’ scenario (1960–2014) with one ensemble 
member for each model. Climate and land carbon sinks are simulated 
with all-forcings, including both the natural causes (for example, vol-
canic eruptions and solar variability) and human factors (for example, 
CO2 concentration, aerosols and land use) over the period 1850–2014. 
In coupled ESMs, the carbon cycle is coupled to the climate system.

Offline LSM. Six offline LSMs from the Land Surface, Snow and Soil 
Moisture Model Intercomparison Project (LS3MIP) are used here56: 
CESM2, CNRM-ESM2-1, IPSL-CM6A-LR, MPI-ESM1-2-LR, UKESM1-0-LL 
and CMCC-ESM2. The offline LSMs account for land-use changes but 
do not include local land–atmosphere feedbacks. We adopted data 
output from the ‘Land-Hist’ scenario (1960–2014) with one ensemble 
member for each model, for which the atmospheric forcing, vegetation, 
soil, topography and land/sea mask data were prescribed following the 
protocol used for the CMIP6 DECK simulations. The atmospheric forc-
ing comes from the Global Soil Wetness Project phase three (GSWP3), 
which is a dynamically downscaled and bias-corrected version of the 
Twentieth Century Reanalysis57. Spin-up of the land-only simulations 
follow the protocol of the project ‘Trends and drivers of the regional 
scale sources and sinks of carbon dioxide’ (TRENDY)58.

Following previous efforts11,59, to enable a fair comparison of the 
water–carbon relationship between observations and models, we 
use the sum of soil moisture in all layers and snow water equivalent 
as modelled terrestrial WS. In the tropics, snow water equivalent is  
negligible.

Partial correlation. Partial correlation is used here to directly check 
whether increasingly negative water–carbon coupling is influenced 
by confounding water–temperature coupling. However, using spe-
cific values of RW,CGR|T to conclude the sign and strength of total wa-
ter impacts on CGR is not suggested. RW,CGR|T isolates water impacts 
on CGR from confounding water–temperature coupling by linearly 
removing all temperature-related covariations. However, given the 
well-documented soil moisture–atmosphere feedbacks21, temperature 
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variability actually includes many feedbacks from soil moisture (for 
example, hot extremes at tropical semi-arid regions) and removing all 
of them would indirectly remove some water impacts on CGR because 
of their physical connection. In addition, models do not reproduce the 
intensified water–carbon coupling but roughly capture the sign and 
strength of long-term tropical water–carbon coupling during 1960–
2018, thus providing insights into underpinning processes. Model 
factorial experiments show that removing soil moisture interannual 
variability suppresses land carbon uptake variability by about 90%, 
whereas tropical mean temperature remains unchanged (Extended 
Data Fig. 10 in ref. 20). Therefore, ref. 20 suggest that tropical mean 
temperature might not represent a mechanistic climatic driver for 
land carbon uptake variability. Hence, RW,CGR|T is an insufficient and 
less accurate measure to infer the sign and strength of independent 
water impacts on CGR and underestimate water impacts on CGR 
in phases in which temperature control is dominant. Nonetheless, 
their relative changes are useful in this study and support the finding 
that water–carbon coupling has become increasingly negative in the 
recent past (1989–2018) compared to previous climate conditions  
(1960–1989).

Empirical orthogonal function. The method of empirical orthogonal 
function (EOF) analysis can deconvolve the spatiotemporal variability 
of a signal into orthogonal modes, each indicated by a principal spatial 
pattern and the corresponding principal component time series. It is 
widely used to study spatial patterns of climate variability and how 
they change with time60,61. We perform the EOF analysis on simulated 
tropical soil moisture from CMIP6 models.

Ridge regression. In the presence of collinearity, using the OLS estima-
tor can lead to regression coefficient estimates that have large sampling 
variability and even a wrong sign. Ridge regression is a common tech-
nique to be used to address the issues arising through collinearity62. In 
ridge regression, a penalty term is added to the loss function to shrink 
the regression coefficients63. The amount of shrinkage is defined by a 
regularization parameter that was chosen by us in a cross-validation 
approach. The data were randomly split 25 times into training and vali-
dation sets and, for each split, the performance for the validation test 
set (mean squared error) was assessed for 100 different regularization 
parameters spaced evenly on a log scale. The best-performing regulari-
zation parameters were selected for each split and the average between 
them was retained for the final model. To assess the uncertainty in the 
regression coefficient estimates, we relied on bootstrapping, meaning 
that we randomly sampled the data 5,000 times and estimated the 
regression coefficients for each sample.

Spatial coherence. To quantify the degree of spatial coherence of 
yearly tropical WS anomaly, following ref. 9, we calculate a large covari-
ance matrix of all grid cells versus all grid cells for tropical WS anomaly. 
Each element in this covariance matrix is termed as ci,j as follows:

c = cov(WS ,WS ) (1)i j i j,

where i and j indicate the two grid cells that used to calculate covariance, 
WSi and WSj are the corresponding yearly WS anomaly time series in 
the specified time period. Then, we summed all, positive and nega-
tive covariance terms (termed as tcov, tcov+ and tcov−), respectively,  
as follows:
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The variances in the diagonal of the covariance matrix (where 
i = j) were excluded because they are always positive and do 
not contribute to the estimate of spatial coherence. Finally, the 
spatial coherence of WS anomaly was defined as the following  
equation:

Spatial coherence =
tcov + tcov

tcov
× 100% (3)

+ −

In theory, 100% indicates all grid cells covariate in the same sign, that 
is, highest spatial coherence. Lower values indicate that total positive 
covariances are counterbalanced by total negative covariances, that 
is, lower spatial coherence.

Vegetation optical depth and aboveground carbon. VOD re-
trieved from microwave satellite observations is linked to the water 
content of vegetation mass and offers possibilities for monitoring 
AGC dynamics41. We used recently published long-term VOD prod-
ucts from the VOD Climate Archive (VODCA), which combines VOD 
retrievals that have been derived from multiple sensors (SSM/I, TMI, 
AMSR-E, WindSat and AMSR2) using the Land Parameter Retrieval 
Model64. For time completeness, we used the longest available VOD 
estimated from Ku-band which covers the period 1988–2016. To es-
timate the tropical AGC, following the approach of ref. 65, we first 
fitted a four-parameter empirical function by calibrating tropi-
cal VOD against the tropical AGC benchmark map from ref. 66 in  
2000 as follows:

a
b c b c
b c b c

dAGC = ×
arctan( × (VOD − )) − arctan(− × )

arctan( × (Inf − )) − arctan(− × )
+ (4)

where a, b, c and d are four best-fit parameters and Inf is set to 1010. AGC 
density (MgC ha−1) was derived by multiplying the original aboveground 
biomass density values by a factor of 0.5 (ref. 67). For Ku-VOD and AGC, 
data are aggregated to the spatial resolution of 0.5° × 0.5°. The spatial 
scatter plot of VOD and AGC clearly demonstrates the good relation-
ship between VOD and AGC (coefficient of determination R2 = 0.76, 
P < 0.01; Supplementary Fig. 15). It seems the performance of VODCA 
Ku-VOD is less comparable to L-VOD (R2 = 0.81) (ref. 41), which was con-
sidered to be more sensitive to AGC in high biomass regions. How-
ever, L-VOD has only been available since 2010 and thus is not used 
here. Finally, we apply this empirical function to convert VOD to AGC  
from 1988 to 2016.

Data availability
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Code availability
Codes are available through Zenodo at https://doi.org/10.5281/
zenodo.6447779. 

https://gml.noaa.gov/ccgg/
https://grace.jpl.nasa.gov/data/get-data/monthly-mass-grids-land/
https://grace.jpl.nasa.gov/data/get-data/monthly-mass-grids-land/
https://doi.org/10.6084/m9.figshare.7670849
https://www.uea.ac.uk/groups-and-centres/climatic-research-unit
https://www.uea.ac.uk/groups-and-centres/climatic-research-unit
https://www.dwd.de/EN/ourservices/gpcc/gpcc.html
https://disc.gsfc.nasa.gov/datasets/
http://berkeleyearth.org/
http://berkeleyearth.org/
https://psl.noaa.gov/data/gridded/data.noaa.ersst.v5.html
https://psl.noaa.gov/data/gridded/data.noaa.ersst.v5.html
https://pcmdi.llnl.gov/CMIP6/
https://pcmdi.llnl.gov/CMIP6/
https://doi.org/10.5281/zenodo.2575599
https://doi.org/10.5281/zenodo.2575599
https://doi.org/10.5281/zenodo.6447779
https://doi.org/10.5281/zenodo.6447779


50. Masarie, K. A. & Tans, P. P. Extension and integration of atmospheric carbon-dioxide data 
into a globally consistent measurement record. J. Geophys. Res. Atmos. 100, 11593–11610 
(1995).

51. Tapley, B. D., Bettadpur, S., Ries, J. C., Thompson, P. F. & Watkins, M. M. GRACE 
measurements of mass variability in the Earth system. Science 305, 503–505  
(2004).

52. Harris, I., Osborn, T. J., Jones, P. & Lister, D. Version 4 of the CRU TS monthly 
high-resolution gridded multivariate climate dataset. Sci. Data 7, 109 (2020).

53. Rohde, R. A. & Hausfather, Z. The Berkeley Earth Land/Ocean temperature record. Earth 
Syst. Sci. Data 12, 3469–3479 (2020).

54. Trenberth, K. E. The definition of El Nino. Bull. Am. Meteorol. Soc. 78, 2771–2777 (1997).
55. Huang, B. Y. et al. Extended reconstructed sea surface temperature, Version 5 (ERSSTv5): 

upgrades, validations, and intercomparisons. J. Clim. 30, 8179–8205 (2017).
56. van den Hurk, B. et al. LS3MIP (v1.0) contribution to CMIP6: the Land Surface, Snow and 

Soil moisture Model Intercomparison Project—aims, setup and expected outcome. 
Geosci. Model Dev. 9, 2809–2832 (2016).

57. Compo, G. P. et al. The twentieth century reanalysis project. Q. J. R. Meteor. Soc. 137, 1–28 
(2011).

58. Sitch, S. et al. Recent trends and drivers of regional sources and sinks of carbon dioxide. 
Biogeosciences 12, 653–679 (2015).

59. Wu, R. J., Lo, M. H. & Scanlon, B. R. The annual cycle of terrestrial water storage anomalies 
in CMIP6 models evaluated against GRACE data. J. Clim. 34, 8205–8217 (2021).

60. Björnsson, H. & Venegas, S. J. C. R. A manual for EOF and SVD analyses of climatic data. 
CCGCR Rep. 97, 112–134 (1997).

61. Cai, W. J. et al. ENSO and greenhouse warming. Nat. Clim. Change 5, 849–859 (2015).
62. Dormann, C. F. et al. Collinearity: a review of methods to deal with it and a simulation 

study evaluating their performance. Ecography 36, 27–46 (2013).
63. Hoerl, A. E. & Kennard, R. W. Ridge regression—biased estimation for nonorthogonal 

problems. Technometrics 12, 55–67 (1970).
64. Moesinger, L. et al. The global long-term microwave Vegetation Optical Depth Climate 

Archive (VODCA). Earth Syst. Sci. Data 12, 177–196 (2020).
65. Liu, Y. Y. et al. Recent reversal in loss of global terrestrial biomass. Nat. Clim. Change 5, 

470–474 (2015).
66. Avitabile, V. et al. An integrated pan-tropical biomass map using multiple reference 

datasets. Glob. Change Biol. 22, 1406–1420 (2016).

67. Baccini, A. et al. Estimated carbon dioxide emissions from tropical deforestation 
improved by carbon-density maps. Nat. Clim. Change 2, 182–185 (2012).

Acknowledgements We acknowledge the World Climate Research Programme, which, 
through its Working Group on Coupled Modelling, coordinated and promoted CMIP6. We 
thank the climate modelling groups for producing and making available their model output, 
the Earth System Grid Federation (ESGF) for archiving the data and providing access and the 
multiple funding agencies who support CMIP6 and ESGF. We thank all contributors to the 
LS3MIP and LMIP experiments. We thank the Global Monitoring Division of NOAA/Earth System 
Research Laboratory for providing the atmospheric CO2 measurements. We thank U. Beyerle, 
L. Brunner, R. Lorenz and M. Hauser for downloading and processing the CMIP6 and LS3MIP 
data. We acknowledge the NOAA/OAR.ESRL PSL for providing the ERSST_v5 dataset. We thank 
M. Hirschi for downloading the VOD data. We acknowledge V. Humphrey and Q. Sun for useful 
discussions. L.L., R.S.P., P.C., P.F. and S.I.S. acknowledge support from the European Union’s 
Horizon 2020 Research and Innovation Programme (grant no. 821003 (4C)). L.L., P.C. and S.I.S. 
also acknowledge support from HORIZON.2.5 (grant no. 101056939) (RESCUE).

Author contributions L.L. conceived the original idea. L.L., S.I.S. and P.C. designed the 
experiments. L.L., S.I.S., P.C., W.M., R.S.P., P.F., J.S. and L.G. performed the research. J.S. carried 
out ridge regression analyses. L.L. carried out all other analyses. L.L. wrote the paper with 
contributions from all co-authors.

Funding Open access funding provided by Swiss Federal Institute of Technology Zurich.

Competing interests The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material available at 
https://doi.org/10.1038/s41586-023-06056-x.
Correspondence and requests for materials should be addressed to Laibao Liu.
Peer review information Nature thanks Russell Scott, Jun Wang and the other, anonymous, 
reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are 
available.
Reprints and permissions information is available at http://www.nature.com/reprints.

https://doi.org/10.1038/s41586-023-06056-x
http://www.nature.com/reprints


Article

Extended Data Fig. 1 | Robustness of tropical land climate–carbon 
interannual correlations. a, Histograms of climate–carbon interannual 
correlations in the first three decades (1960–1989) and in the recent three 
decades (1989–2018), derived using 5000 bootstrapping repeats. Same as 

Fig. 1c, but tropical water refers to 6-month lagged precipitation from GPCC 
and tropical temperature is derived from Berkeley Earth global surface 
temperature. b, Same as Fig. 1c, but CGR is replaced with residual land sink 
(RLS).



Extended Data Fig. 2 | Interannual sensitivity of CGR to tropical 
temperature variations. a, Interannual sensitivity of CGR to tropical 
temperature is estimated from the bivariate regression with both tropical 
temperature and tropical water as predictors. Pre indicates concurrent 
precipitation. To keep the consistency in method with the previous relevant 
studies, we first employ the OLS regression. Each dot indicates a 25-year 

period. The central year of the time window is labelled on the horizontal axis. 
Shaded areas represent the 95% confidence interval, derived using 5000 
bootstrapping repeats. For a better readability, only the 95% confidence 
interval of temperature sensitivity from the first and third regression function 
are plotted. b, same as a, but using the Ridge regression.
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Extended Data Fig. 3 | Suitability of using LagP as the poxy of tropical terrestrial water IAV. a, b, IAV of tropical LagP and (a) tropical WS and (b) CGR during 
1960–2018. Vertical grey shades indicate three volcanic eruptions (Mount Agung, El Chichón and Pinatubo).



Extended Data Fig. 4 | Spatial pattern of WS anomaly at EP ENSO and CP 
ENSO years. Year is considered EP ENSO when the largest DJF SST anomaly over 
the region of 2°S–2°N, 110°E–90°W lies in the Eastern Pacific (Eastern of 
150°W) and Nino3 index exceeds one standard deviation. Year is considered CP 

ENSO when the corresponding largest DJF SST anomaly lies in the Central 
Pacific (Western of 150°W) and Nino4 index exceeds one standard deviation. 
Volcano years are excluded from analyses.
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Extended Data Fig. 5 | Interannual correlation of land carbon fluxes to 
tropical water in models. Years labelled on the horizontal axis indicate the 
central year of the 27-year moving time window (all variables detrended at 

yearly scale in each corresponding window). Models are based on tropical total 
soil moisture, tropical temperature and global net ecosystem exchange.



Extended Data Fig. 6 | Interannual sensitivity of land carbon fluxes to 
tropical water in models. For models, global net ecosystem exchange, 
tropical total soil moisture, and tropical temperature from each model are 
used for computations. Univariate and bivariate sensitivity are estimated using 

the OLS regression and Ridge regression, respectively. The best estimate of 
sensitivity of CGR to tropical water is shown. ** indicates a significant 
sensitivity at P < 0.05.
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Extended Data Fig. 7 | Robustness of tropical land LagP IAV. a, b, IAV of tropical LagP in CRU, (a) TRMM during 1999–2018 and (b) GPCC during 1960–2018. c, 
Temporal coverage of the number of gauge stations in GPCC and CRU.



Extended Data Table 1 | Interannual correlation and sensitivity of CGR to tropical water

Estimates are derived from 5000 bootstrapping repeats by randomly selecting years without volcano perturbations in each sub-period. The mean and one standard deviation are presented for 
the metric. The probability that the metric is different from 0 and the corresponding P value are computed by inverting the corresponding confidence intervals. For instance, the probability that 
the metric is different from 0 is 96% suggests that the 96% confidence level of the metric does not include 0 and the corresponding P value is 0.04. ** and * indicate a significant sensitivity or 
correlation at P < 0.05 and P < 0.1, respectively.
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